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Abstract

We construct some extension of cohomological field theoseblg field theory). The stable
field theory is a system of homomorphisms to some vector spaces generated by spheres and disks
with punctures. It is described by a formal tensor series, satisfying to some system of “differential
equations”. In points of convergence the tensor series generate special noncommutative analogues
of Frobenius algebras, describing ‘open-closed’ topological field theories.
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1. Introduction

Cohomological field theories were proposed by Kontsevich and M&hifor descrip-
tion of Gromov—Witten classes. They proved that cohomological field theory is equivalent
to formal Frobenius manifold. Formal Frobenius manifold is defined by a formal series
F, satisfying the associative equatigas14]. In points of convergence the seri€sde-
fines Frobenius algebras. The set of these points forms a Frobenius manifold as regards to
Dubrovin[6].

Cohomological field theory is a system of special homomorphisms to spaces of cohomol-
ogy of Deline—-Mumford compactifications for moduli spaces of complex rational curves
(Riemann spheres) with punctures. In this paper it is constructed some extension of coho-
mological field theories. This extensicstgbl e field theory) is a system of homomorphisms
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to some vector spaces generated by disks with punctures. | conjecture that they describe
relative Gromov—Witten classes.

A stable field theory is equivalent to some analogue of a formal Frobenius manifold.
This analogue is defined by formal tensor sergasu€ture series), satisfying some system
of “differential equations” (including the associativity equation). In points of convergence
the structure series defirextended Frobenius algebras. They are special noncommuta-
tive analogue of Frobenius algebras. Extended Frobenius algebras describe ‘open-closed’
topological field theorieg8] of genus 0 in the same way as Frobenius algebras describe
Atiyah—Witten 2D topological field theorieR,13]. Thus, structure series are noncom-
mutable analogues of formal Frobenius manifolds.

In Sections 2 and 8 is proposed a general axiomatic of topological field theories over
functors. This class involves 2D Atiyah—Wittg13], ‘open-closed[8], Klein topological
field theorieqd3] and cohomological field theori¢g,9].

In Section 4it is constructed and investigatedseabilising functor on a category of
spheres with punctures, disks with punctures and its disconnected unions. For spheres this
construction is liked to modular grapi@] and describes a Cohomological functor for
complex rational curves. The stable field theories are defined as topological field theories
over stabilising functors.

In Sections 5 and @e prove that stable field theories are in one-to-one correspondence
to systems of disk correlation functions. Its “generating functions” are the structure series.

In Sections 7 and & is demonstrated that structure series generate extended Frobenius
algebras in their convergence points and it is constructed some examples.

2. 2D categories

2.1 In this papeia surface denotes a compact surface with or without boundary. Its
connected boundary component is calidmbundary contour of the surface. Any orientable
connected surface is homeomorphic to a sphere gyiandles and holes. Such surface
is calleda surface of type (g, s, 1). Any nonorientable connected surface is homeomorphic
to either a projective plane withhhandles and holes or a Klein bottle witla handles and
s holes. Such surface is calledsurface of type (g, s, 0), whereg = a + (1/2) in the first
case ang = a + 1 in the second case.

A surface with a finite number of marked points is calkedratified surface. Marked
points are also callegpecial points of the stratified surface. Two stratified surfaces are
calledisomorphic, if there exists a homeomorphism of the surfaces, generating a bijection
between their special points.

By |S| we denote the cardinality of a finite sgtLet £2 be a surface of the typg, s, €)
andws, ..., ws be its boundary contours. L&t C £2 be a finite set of marked points and
m = |SN(2\02)|,m; = |SNw;|. Thenthe collectiolr = (g, €, m, m1, ..., my) is calleda
typeof connected stratified surfa¢e, S). A connected stratified surface of tygds called
trivial, if u = 2g+m+s+(1/2) Y_m; —2 < 0. Itis easy to prove the following statement.

Lemma 2.1. Any trivial stratified surface is isomorphic to a stratified surface from the
list:
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(1) a sphere S2 without special points (u = —2);
(2) aprojective plane R P2 without special points (u = —1);
(3) adisk D? without special points (u = —1);
(4) asphere (52, p) with asingleinterior special point p (u = —1);
(5) adisk (D?, g) with asingle special boundary point and without special interior points
(n=-1/2);
(6) asphere (2, p1, p2) with two interior special points (i = 0);
(7) aprojective plane (R P?, p) with asingleinterior special point (. = 0);
(8) atorus 72 without special points (i = 0);
(9) aKlein bottle KI without special points (i = 0);
(10) adisk (D2, p) withasingleinterior special point and without boundary special points

(1 =0);
(11) a disk (D?, g1, g2) with two boundary special points and without interior special
points (u = 0);

(12) a Mobius band Mb without special points (i = 0);
(13) acylinder Cyl without special points (i« = 0).

Let 2 be a stratified surface. A generic not self-intersecting cyrve £2 is calleda
cut. Generic means that has no special points and either it is a (closed) contour without
boundary points of2 or it is a segment, whose ends belong to the boundan aind
all interior points are interior points of the surface. The cuts form nine topological classes
described if3]. A set of pairwise nonintersecting cuts is calkedut system.

Let I" be a cut system of a stratified surfa@e Consider compactificatiof? of £2\ I"
by pairs(x, ¢), wherex € y C I andc is a coorientation of the cyt in a neighbourhood
of x. Denote by2/I" a surface obtained by contracting each connected compdaherit
2\ (2 \ D into a pointc;. We assume tha®y = /I is a stratified surface. Its special
points are the special points &f and the points;.

2.2 In this section, followindg3], we define a tensor catego€yof stratified surfaces
with a setO of local orientations of special points. gt of local orientations means that
for any special point € Q of stratified surface2 we fix an orientation or of its small
neighbourhood.

A setO of local orientations is saiddmissible, iff either §2 is orientable surface and all
local orientations are induced by an orientatiorf2ér £2 is nonorientable surface and all
local orientations at all special points from any boundary conéguare compatible with
one of the orientations @#;. Moreover, we consider that any boundary contour contain at
least one special point.

LemmaZ2.2. Let (£2', O') and (£2”, ©") betwo pairs, consisting of stratified surfaces and
admissible sets of local orientations at special points. If stratified surfaces 2’ and £2” are
isomor phic then there exists an isomorphism ¢ : 2’ — 2 such that ¢(0') = O”.

The proof follows from standard properties of surfaces.
Pairs(£2, O) of stratified surface® with sets of local orientation@ at their special points
areabjects of the basic category C. Morphisms are any combinations of the morphisms of

types (1)—(4).
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(1) 1somorphisme : (2, O) — (£2', ©'). Byadéfinition, ¢ is anisomorphism : 2 — £’
of stratified surfaces compatible with local orientations at special points.

(2) Changeoflocal orientationsy : (2, O) — (£2, O'). Thus, there is one such morphism
for any pair(O, O') of sets of local orientations on a stratified surfaze

(3) Cuttingn : (£2, ©) — (24, Ox). The morphismy depends on a cut systefhendowed
with orientations of all cuty € I'. 24 is defined as contracted cut surfa@gr".
Stratified surface?y inherits special points a2 and local orientations at any of them.
The orientations of cuts induce the local orientations at other special points.

Define a tensor product’ 6 : (£2', O') x (2", 0") — (£2, O) of two pairs($2’, 0') and
(£2”, 0" as their disjoint uniori$2, ©) = (2’ u 2”7, 0’ LU O").

Subcategories of the basis categBigre called 20categories. The basic categor§ has
subcategorie§, , ., whereg is either an integer or half-integer non-negative number or
oo, s is an integer non-negative number®rande = 0, 1. The objects of, oo are all
pairs(£2, O), wheres2 is a stratified surface of typ@&, €, m) andg < g. Fors > 0 objects
of C, 5,0 are all pairg£2, 0), wheres? is a stratified surface of typ@, €, m, mq, ..., m;3),

g < g, ands < 2(g — g) + 5. Thus,C = C,0,0. The category, ;1 is a subcategory of
C, 5,0 Its objects are all objects2, O) of C, ;.0 such that2 is an orientable surface. Denote
byC, s,1,0 subcategory of, .1, consisting of£2, O), whereQ is generated by some global
orientation of§2. This global orientation is marked by the same synol

2.3 Below we define aructure functor (£2, O) — V(£2, O) from the basic category of
surfaces to the category of vector spa@s

Let{X,,|m € M}be afinite setof = |M|vector space¥,,. The action of the symmetric
groupS, on the setl, ..., n} induces its action on the linear spa@:(1,... n}om Xo1) ®
-+ ® Xsm)), @an element € S, brings a summand,) ® - - - @ X4(n to the summand
Xo(s1) ® - - - ® Xo(sn))- DENOtE by®,,e 1 X, the subspace of all invariants of this action.

The vector spac®,,cy X, is canonically isomorphic to atensor product o)} in any
fixed order, the isomorphism is a projection of the vector sgagey X, to the summand
that is equal to the tensor product ¥f, in a given order. Assume that al,, are equal
to a fixed vector spac&. Then any bijection < M’ of sets induces the isomorphism
QmeMXm <> Qmrem X

Let A and B be finite dimensional vector spaces over a figldndowed with involutive
linear transformationgt — A andB — B, which we denote by — x* (x € A) and
y = y* (y € B), resp.

Let (£2, O) be a pair, consisting of a stratified surfaeeand a se© of local orientations
at its special points. Denote ly, the set of all interior special points and I8, the set
of all boundary special points. Put alszy = £, U £2,,. Assign a copyA, of a vector
spaceA to any pointp € £2, and a copyB, of a vector spaceé to any pointg € £2,. Put
V(s$2, 0) =Vp= (®p€QaAp) & (®q€Qbe)-

The groupX'(£2) of transpositions of2;, acts natural orVy,.

For any morphism of pair¢2, ©O) — (£2', O) define a morphism of vector spaces
Vo — Vg as follows:

(1) An isomorphism¢ : (£2,0) — (£, ©O) induces the isomorphism, : Vo —

Vo becausep generates the bijection8, < 2, and$2, < 2, of sets of special
points.
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(2) For a change of local orientations : (2, 0) — (£2, @) define a linear mag,. :
Vo — Vo as(®ren,¥r), Where for any € §2g

H /
if or =0,

if o =—o).

X
Yr(x) = { "
X

(3) Inorder to define a morphism : Vo — Vg, for any cutting morphism : (£2, O) —
(24, Oy) we need to fix elements 4 , € A® A, andkp ., € B® BandU € A. (The
notation will be clear from the sequel.)

Evidently, it is sufficient to define, for an arbitrary oriented cyt C 2. In this case we
have a canonical isomorphisWy, = V ® X, where

A® A if yisacoorientable contour
X=1B®B if yisasegment
A if yisanoncoorientable cut

Forx € Vg putn,.(x) = x ® z, wherez is eitherk 4 ,, or K .., or U resp.
Finally, for a ‘tensor producty : (2, 0') x (2", 0") — (2'u 2", 0 uO") there is
evident canonical linear maR : Vo ® Vor — Voror.

3. Topological field theory over afunctor

3.1 LetR be acategory of triple@V, p, %), whereW is a vector spaces over a fidld X
isagroup, ang : X — Aut(W) isahomomorphism. MorphisiW, p, ) — (W', o/, )
is a pair of isomorphism&y : W — W/, 9y : ¥ — X’) such thathyp = p'd 5.

Let 7 be a functor from a 2D category ® such that7(£2, O) = (W(£2, O), p(£2, O),
X(£2, 0)), whereX(£2, ©) = X(£2) is the group of transpositions &f;,.

We consider thaf(£2, O) = (K, p, X), wherep(X) is the identical map, if2 is a trivial
stratified surface, an@(r) is the identical morphism, if is a morphism of trivial stratified
surfaces.

A topological field theory over Tis a set

F={A, x> x" B,y y". T, &0}

where(A, x — x*) and(B, y — y*) are finite dimensional vector spaces oeendowed
with involute linear transformation and o ¢} is a family of linear operator® o) :
Vo — W(£2, O), whereVy, is the image of £2, O) by the structural functor fofA, x +—
x*, B, y > y*} andT(2, ©) = (W(£2, O), p(£2, 0), Z(£2, O)).

The setF is called a topological field theory, if the following axioms are satisfied:

(0) Algebraicinvariance
For anyo € X(£2, O) itis required that

D2,0)(0(x)) = p(2, 0)(0)(P(2,0)(x)).
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(1) Topological invariance
For any isomorphism of paiis : (£2, 0) — (£2/, @) itis required that

D (2,0 @x(x)) = T($)P(2,0)(X).

(2) Invariance of a change of local orientations
For any change of local orientatiogs: (£2, ©) — (£, O') itis required that

D (2.0 (¥x(x) = TW)P(2,0)(x).

(3) Nondegeneracy

Define first a bilinear fornix, x') 4 on the vector spaca. Namely, let(£2, O) be a
pair, where2 is a sphere with two interior special poinisp’ and the se® = {0,, 0,7}
is such that local orientations,, 0, induce the same global orientations of the sphere.
Put(x, x)a = @2,0)(xp ®x;,), wherex, andx;, are images of € A andx’ € A in
A, andA, resp. The correctness of this definition follows frémioms 5.1 and 5.2
Evidently, (x, x") 4 is a symmetric bilinear form.

Similarly, define a bilinear forngy, y") g on the vector spacs, using a disc with
two boundary special poinig ¢’ instead of a sphere with two interior special points
p. p'. As in the previous case, local orientatians o, must induce the same global
orientations of the disc. Evidentlyy, y') g is a symmetric bilinear form.

Itis required that formsx, x') 4 and(y, y') g are nondegenerate.

(4) Cutinvariance

Axioms 5.1-5.3allow us to choose elemenks, , € A x A, K, € Bx BandU e
A. Indeed, any nondegenerate bilinear form on the vector spa@monically defines
[3, Section 2]the tensor Casimir elemerity € X ® X. Taking forms(x, x")4 « =
(x, x4 and(y, y) g+ = (v, y*) 5, We obtain element& 4 , andK z ..

A linear form @ o) for a projective plane?2 with one interior special point is an
element of the vector space dual4oWe denote by/ the image of this element iA
under the isomorphism induced by nondegenerate bilinear formt) 4.

We shall use just these elements for morphigmef type (3).

For any cut systeni” endowed with orientations of all cuts it is required that

D (24,00 (M4 (x)) = TN D (2,0 (X).

(5) Multiplicativity
For the product : (2, 0) x (2",0") — (2'u 2", 0’ uO") of any two pairs
(82, 0) and(2”, ©") itis required that

D (21u027,01u0) O (x1 ® x2)) = P(2,,0,)(X1) ® P(2,,0,)(x2).

3.2 Let us consider now some example of topological field theory on 2D categories. In
this section we consider only functogs2, O) = (W(£2, 0), p(£2, O), X(£2, O)), such
that p(£2, O)(o) is the identical map for abk € X (£2, O).

(1) Topological field theory on C, s  (over trivial functor)
Consider the functor, corresponding the figltb all objects$2, ©) and correspond-
ing identical map to any morphism:



SM. Natanzon/ Journal of Geometry and Physics 51 (2004) 387-403 393

(a) This givesan Atiayh—Witten 2D topological field theory [2,13] for the category
Coo.0,1 @nd involutionx™® = x.
(b) The categorfs 0,1 and the involutions™ = x, y* = y gives ‘an open-closed’
topological field theory in the sense of Lazaroi8].
(c) The categonCs. .0 givesa Klein topological field theory in the sense 0f3]
(without units).
(2) Cohomological field theorieson C, s

Recall that a Klein surface of typg, s, €) is a surface of typég, s, €), endowed with a
dianalytic structure, i.e., an atlas with holomorphic and antiholomorphic transitions func-
tions[1]. It is equivalent to a real algebraic curve (for an information about real algebraic
curves, se¢ll]). A Klein surface of typeG = (g, €, m,m, ..., my) is called a Klein
surface with special points of typ&. The moduli space of Klein surfaces is constructed
in [10]. Let H* (Mg, K) be a cohomological algebra of Deline-Mumford compactification
of the space of Klein surfaces of tyge An identification of special points gives some
embeddingg, x Mg, — Mg andMg, — Mg by analogy with[9].

Cohomological field theory in our conception is defined as the topological field theory
over the functofthat associate the algebl (Mg, K) with each objects2, ©), whereG
is the type off2, and associate the homomorphisms generated by the embeddings
Mg, — Mg andMg, — Mg with the cutting morphisms. Here' = x, y* = y and the
other morphisms are the same as that for the trivial functor.

This definition takes the (complete) cohomological field theory as regar{3 tior
subcategorie€p 0.1 (Coo.0.1)-

3.3 According to[9], the cohomological field theory ov€p o 1 generate some defor-
mations of Atiayh—Witten 2D topological field theory in genus 0. These deformations are
described by formal Frobenius manifolds, i.e., formal solutions of WDVV equafinh4].

Our goal is the construction of a functor 681,171 such that topological field theory over
this functor generate deformations of open-closed topological field theories in genus 0. We
shall prove that these deformations are described by formal solutions of some noncommu-
tative analogues of WDVV equations.

4, Stablefield theories

4.1 Let2 = (£2, O) be a oriented stratified surface afide generated by some orienta-
tion. (Here and later we omit the mark of orientatiOnif it is constant in the construction).
The orientation off2 gives a natural sense to inequalitias< b> < b3, for points from
a connected component of the boundaryofFor C c £, denote byX°(C) the group
of transpositionsr € X(£2), such thato(b1) < o(b2) < o(b3) if b1 < b < b3 and
by, by, b3 € C.

A pair (I;0), whereI” C £2 is a cut system and € X(£2) is calleda tiling, if all
connected components @f/ I" are nontrivial. A tiling(I; o), wherel” = (J is also assumed
and it is calledempty tiling.

Two tiling (I'’, o’) and(I"”, o) are calledsomorphic, if there exists a homeomorphism
¥ 1 2 — £2, preserving the orientation, movinrg to ¢” and such that/(I"’) = I'”. An



394 SM. Natanzon/ Journal of Geometry and Physics 51 (2004) 387-403

isomorphic class of a tiling is calleaddiagram. Let [I] o] be the diagram corresponding to
atiling (I 0).

Denote byK(£2) the vector space ovét generated by all diagrams ¢f.

Consider a tiling(I; o), corresponding to a diagraffi € K(£2). A connected com-
ponent of$2 \ I' is calleda vertex of the tiling. Denote byV(7) the set of all vertices
of T.

Let 27 be the connected component®@f I, corresponding to a vertex Let AT and
B! be the set of interior and boundary special point2hf We can associate* € X(£2)
toanys! e X(£21), considering that*(b1) < o*(b2) < o*(b3) if by, ba, b3 ¢ 221 belong
to the same connected componentf I" andb1 < b2 < b3. Moreover, we can consider
any cutsystemoi’! e 27 as a cut system af2. Thus a diagrans = [I'!, 1] € K(27)
generate a diagraxf, v, S) = [I" U I}, 0%0] € (K(£2)).

4.2 A tiling (I; 0) is calledsimple, if I" consist of one cut. A simple tiling is called
A-tiling, if I" is a closed contour homotopic to zeitiling, if I" is a segment, dividing
the surface(C-tiling, if I" is a closed contour nonhomotopic to zero, &ntiling, if I" is
a segment, nondividing the surface. Diagrams correspondingBoC, D), empty tillings
are calledA (B, C, D), empty diagram.

Let C1 andC; be subsets of a surface By r4(C1|C2) (respectivelyrg(C1|C2)) denote
the set ofA- (respectively,B-) diagrams corresponding {@; o), whereI" divide C1 and
Co.

For a sphere2 andas, a2, as, ag € 2, putrg(ai, azlas, as) = ra(a, azlas, as).

Let2be adiskps, by, b3, bs € 2, andb1 < by < bz < bg. Denote by (b1, b2|b3s, ba)
the set of all diagrams belongingtg(a(b1) U o(b2)|o(b3), Ua(bs)) and corresponding to
(I; o), whereo € X°(a(b1)Ua(b2)Uo(b3)Ua(ba))NX($2,—(0(b1)Uo(b2)Ua(b3)Uo(ba))).

Let 2 be a diska € 2., b1,b2 € 25, 0 € X(£2). Denote byrp (b1, bola) the set of
all diagrams belonging teg(o(b1) U o(b2)|a) and corresponding tol; o), whereo €
2 (825 — (o(b1) Uo(bp))) and any ends of I" satisfyo(b1) < b < o(b2).

Let 2 be a diskay, a2 € 2,,b € 25. Putrg(ai, azlb) = ra(ay, az|b). Denote by
ro(az, bla2)ro(az, blay) the diagrams corresponding td1 U I, o) where(I'1, o) from
rg(a1 U o(b)|az), (I, o) fromrg(az U o(b)|a1), ando € X (25, — b).

Let £2 be a cylinder. Denote byl (C) andr (D) the set of allC- and D-diagrams
respectively.

Denote byH*(£2) the set of linear functions: K(£2) — K, that is equal to 0 on all
elements in the forms:

1) [#(D), o(p)a] — [I7 o]
for any tiling (I o) of £2, any isomorphisng : (£2, O) — (£2, O) and the transpo-
sitiono(¢) = ¢lg,
2 Yo TvS- > (TS
SEVQUT (a1,az|az,as) Sergg (az,azlas,ay)

for any diagrant” e K(£2), anyv € V(T) such that2?, is a sphere, and any pairwise
different pointsay, az, as, as € (27),.

3 Yo @TusH- Y (TS

Ser o1 (b1,b2|b3,bs) Serqr (b2,b3lba,b1)
v v
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forany diagranT € K(£2),anyv € V(T) such thalQ[, isadiskand anyy, by, b3, ba €
(27, such thaby < by < b3 < ba.

4 Yo TuH- > (TvS

Sergr (b1.bela) Sergr (b2.bila)

for any diagran” € K(£2), anyv € V(T) such that2?, is a disk anyz € (27),,
and any different pointay, b, € (227),,.

() Y. (TvS)- > (T. v, S)
SerQUT (a1,az2|b) Seng (al,blaz)r_qg (az,blaz)
for any diagrant € K(£2), anyv € V(T) such that2! is a disk withn + 2 interior
andm + 1 boundary marked points,e (£27),, and distincty, by € (27)p.

(6) Y. TuH- Y (LvS

Sergr(C) Sergr (D)

for any diagram” € K(£2), and anyv € V(7) such that2?, is a cylinder withn
interior marked points, withn + 2 boundary marked points and also any boundary
contour contained marked points.

Define the actiop(£2) : X(£2) — Aut(H*(£2)) by o()(I; 6') = I(I;, /o).

Extend our definitions dK(£2), H*(§2) andp(£2) on disconnected sunig3 = §21 11 £2-
by K(£2) = K(£21) ® K(£22), H*(£2) = H(£21)* ® H(£22)*. The actionsp(£21) and
0(£22) generate the action(£2). This gives a possible to defirfé* (£2) andp(£2) for any
disconnected sums of oriented sphere and disks.

Let y be a simple cut o2 and 24 = £2/y. Denote byK, (£2) C K(£2) the subspace
generated by all diagrams containing theguf diagram?T € K(£2%) generates a diagram
T e K, (£2). This correspondence defines a monomorphism K(£24) — K, (£2) C
K(£2) and thus a homomorphisnj D H*(2) — H*(2%).

4.3 Nowwe introducastabilisingfunctor 7onthe categorglg’zq 1 With structure functor,
generated by arbitrary dafd , x — x*, B, y — y*}.

For local orientation®), generated by a global orientation we (2, O) = (H*(£2),
p(£2), X(£2)).

For isomorphismp : (£2, 0) — (£2, @) denote byF(¢) : H*(2, 0) — H*($2', O,
the isomorphism that it generates.

Change of global orientatiottr : (2, 0) — (£2, ©') is generated by an isomorphism
¢ (2,0) > (2,0). PutF) = F(o).

For cutting morphisny : (2, O) — (24, Ox) by a cuty C £2 we consider thaf(n) is
generated by7.

By definition, topological field theory

N={A, x> x*,B,y— Yy, F, ®2,0)}
with values in a stabilising functdF is called astable field theory.
Remark 4.1. It follows from Manin[9] that the codiagram spad&*(£2) of a sphere with

n special points coincides with the cohomological algelfa Mg ,, K) of the Deligne—
Mumford compactification of moduli space of spheres witpunctures. Thus, for* = x
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stable field theory on 2D categafy .1 coincides with the Kontsevich—Manin cohomolog-
ical field theory[7].

5. System of disk correlation functions

5.1 LetA andB be vector spaces with basgs, ..., «,} C A, {81,..., Bn} C Band
involutionsx — x*, y — y* (x,x* € A, y, y* € B). Consider a collection of tensofg, ; :
A®" @ B®" — K}. By (x1, ..., Xk, Y1, - .., ) denotefi ((x1®@ - @ x, ® y1® - - - ® ),
wherex; € A, y; € B. We say that this collection isgystem of disk correlation function,
if the following conditions hold.

Axiom5.1. Thevalue(xy, ..., xk, ¥1, - . ., ye) IS invariant under any permutation.gfand
cyclic permutation ofy;.

AXIOM 5.2, (X1, ..., Xk, Y1 oo Vo) = (K]0 oo s X0 V0 Yy g oo Y1)

Axiom 5.3. The bilinear forms(x;, x;) and(y;, y;) are nondegenerate. Denote By */
and FFi'Pi the inverse matrices fofy,,; = (o, ;) andFgp, = (B;, B)).

Axiom 5.4. Letxy, xp, x3, x4, x' € AandA = {x1, ..., x"}. Denote by(A|x1, x2|x3, x4)

the sum of all numbers as1, x2, x°D, ..., x°® o; > e o), x3, x4, x°6HD

x°®), whereO< s <r,1<i, j <nando passes through all permutatlonsmhd|ces.
The axiom says that

(Alx1, x2|x3, x4) = (Alxa, x1|x2, x3)

for any A andx1, x2, x3, x4.

Axiom 55. Letx’' € A, A = {x,...,x"}, y1, y2, v3, ya, ' € B, andB = {y!, ..., yP}.

Denote by(A, B|y1, y2|ys, y4) the sum of all numbers gs®®, ..., x7® & &P,
yl’ yS(pl—i_l)’ AR ) yg(pZ)’ y2’ yg(pz-i_l)’ AR ] yg(p3)’ ﬂl)Fﬂlﬂj <ﬂ]7 'xo—(s+1)’ AR ) xa(r)’ yS(p3+1)7

, yé(m), V3, yé(p4+1)’ o yé(ps), ya, yé(ps-%l), e yE(p)>, where 0< s <r,0 < p1 <
p2 < p3<ps<ps<p,Ll<i, j<m,o passesthrough all permutations-ohdices and
& passes through all permutationspoindices.

The axiom says that

(A, Bly1, y21y3, ya) = (A, Blya, y1ly2, y3)
forany A, B, andy1, y2, y3, ya.

Axiom 5.6. Letx,x' € A, A= {(x}, ..., x"}, y1. 2. € B, andB = {y', ..., y?}. De-
note by(A, Blx|y1, y2) the sum of all numbers gs, x®@, ..., x® D - & p) gy
Fﬂ;ﬁ,(ﬁ xOGHD o x00) EpAD o EP2) yé(p2+l) . yé(ps) V2, yé(p3+1) o

y&P)y where 0< s < r,0< p1 < po < p3 < p,1 < i, j < m, o passes through all
permutations of indices and: passes through all permutationsgoindices.
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The axiom says that

(A, Blxly1, y2) = (A, Blxly2, y1)
forany A, B, x, andys, y2.

Axiom5.7. Letxq, xo,x' € A, A= {xl, Xy, yi € B,andB = {yl, ..., y’}. Denote
by (A, Blx1, x2|y) the sum of all numbers ds1, x2, x*, ..., x7©) o) F4% (a;, x°6+D,
L x00 y ED L 3EP)Y where 0< s < r, 1 < i, j < n, o passes through all
permutations of indices and: passes through all permutationsoindices.
Denote by( A, Blx1, y|x2) (A, Blx2, ylx1) the sumofallnumbers as, x®D, ... x?® y,
VD g L et Ep) g2 EpatD) ) FB FFERT BL, xos+D),
L x0O yEPED yé(l’Z))(,BJZ., X0 L x00) yEpstD yEPa)y where 0< s <

t<r0<p1<p2=<p3s=<ps=pl=ilji? j2 <m, o passes through all

permutations of indices and: passes through all permutationspindices.
The axiom says that

(A, Blxy, x2ly) = (A, Blx1, ylx2)(A, Blx2, ylx1)

forany A, B, x1, x2, andy.
We say that a system of disk correlation functiomitended if the following condition
holds.

Axiom 58. Letx’ € A, A = {x},...,x"}, y1,)5 € B, andB = {y}, ..., y*}. Denote
by (A, Bly1, y2). the sum of all numbers gs°®, ..., x7® y, y¥D 8D ;) peic;
(ocj,xo(s""l), o, x00) v2, yE(‘Hl), ...,ys(”)), where0<s<r,0<¢g=<p,1<i,j<n,
o passes through all permutationsrdhdices anc passes through all permutations;of
indices.

Denote by(A, B|y1, y2)» the sumofallnumbersds®®, ..., x®) yy, yO &),
i yEatD T yEa2) Ty, Skl e g yEasth 80y PR where 0< gy
<g2<q3=<p,1<i, j=<n,opassesthrough all permutationsrdhdices and passes
through all permutations gf indices.

The axiom says that

<A1 B|Y1» yZ)a = (Av Blyls )’2>b

forany A, 3, y1 andys.
It is easy to prove that the axioms are fulfilled for any bages...,«a,} C A,
{B1, ..., Bu} C Bif they are fulfilled for one pair of such bases.

5.3 LetN'={A,x > x*, B, y > y*, F, ®2.0)} be a stable field theory on the category
08,1,1- Considerthe collection oftensaps, . . ., xk, y1, - - ., o) = @2,0)(2) (8, 1). Here
£2 is a sphere (iZ = 0) or a disk (if¢ > 0) with k special interior pointgs, ..., a; and
with ¢ special boundaries points, ..., b, ¥ is the empty diagram a2 and 1 is identical
permutation. We assume that the poibis. . ., b, are ordered by the orientation of digk
andz =x1® - Qx; ® y1 ® - - - ® y¢, Wherex; corresponds ta; andy; corresponds to
b;. We say that the tensotsy, ..., y¢)» aregenerated by N.
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Theorem 5.1. The correspondence N — {{x1, ..., y¢)n} iS one-to-one correspondence
between stable field theories on Cp 1.1 and systems of disk correlation functions. If Ais
stablefield theorieson Co 2,1 then {(x1, .. ., y¢) &} isan extended systemsof disk correlation
functions.

Proof.

(1) Provethat(x1, ..., ye)n}isa(extended) system of disk correlation functions. Axioms
(5.1)—(5.3) for systems of disk correlation functions follow from Axioms (1)—(3) for
topological field theoriesAxioms 5.4-5.7are fulfilled because o 0)(z) € H*(£2).

(2) Now let{(x1, ..., y¢)} be a system of disk correlation functions. Consider a sphere
(if £ = 0) or a disk (if¢ > 0) £2 with k special interior pointay, ..., a; and with¢
special boundaries poinks, . . ., by. Put® o 0)(z) (8, 1) = (x1, ..., Xk, Y1, - - -, VOIN-

We assume that the poirts, . . ., by are ordered by the orientation of diskandz =
1R Qx ®y1® - ® y¢, Wherex; corresponds ta; andy; corresponds té;. ¢
is the empty diagram a2 and 1 is identical permutation.

Using Axioms (0), (4) and (5) for topological field theories we can uniquely continue
P 0.0)(z) up to a linear functiori : K(£2,0) — K. It follows from Axioms 5.4-5.7
for systems of disk correlation functions thiate H*(£2, O). It follows from Axioms
5.1-5.3or systems of disk correlation functions that (1)—(3) for topological field theories are
fulfilled. O

6. Structure equations

6.1 Let, as aboved, x — x* andB, y — y* be vector spaces with involutions. These
involutions generate involutioroon A%X @ B®¢ by the rulex(x1®- - - QX @ y1®- - -Qy¢) =
X ® - ®x;®y, ®- --®yj). Fixbaseday, ...,a,} C Aand{p, ..., Bu} C B.By
definition, we consider that a multiplication of monomials® - - - ®«;, ® B, @ - - - ® B,
andoz;.l ®--~®a;§ ®ﬁ}'1 ®~--®ﬁ}Z is the monomial;, ® - -- ® a;, ®oc;1®-~-®(x;]; ®
Bip® - ® By, ®f5;~1®-~-®ﬂ}.z.

Now considera tensor series, i.e., a formal series of tensor monomials =
oclin, . siklji, .o vs jO)on @ Qa;, ®Bj; ®---® B, wherec(iy, ..., ikl j1, ..., jo) €
K. The involutions naturally acts on the set of such series. The multiplication of monomial
defines the multiplication of formal series.

Define “partial derivative” of tensor series. Itis a linear continuation of partial derivative
of monomials.

Letd(ay ® - - ®@ o, ® Bj; ® -+ ® Bj,)/da; be the sum of monomials a3, ® --- ®
®i, 4 ®O[,'p+1 Q- Qu, ®Bj ®---® Bj, such that',, =1.

Similarly, let (e, ® -+ ® aj, ® Bj; @ --- ® B,)/96; be the sum of monomials as
iy @ - @ oy ®:3j1®"’®ﬁjp—1®ﬂjp+l®"’®ﬂje such thatj, = i.

Put 82/deide; = (8/80;)(/detj), 8°/0;dB; = (3/0c;)(3/3P), 3%/dBidB;, =
(3/9B;)(3/9B;), 9/ dox; dat joer, = (3/Dex;) (3] dex ) (3 dexy).



SM. Natanzon/ Journal of Geometry and Physics 51 (2004) 387-403 399

A definition 01‘83(05,-l ® - ®a,®B, Q- Bj,)/08:i08;98- is more complicated. It is
the sum of monomials a6, ® - - - ®a;, @ B, @ ®fs, 1 ®Ps, ;1 @+ @B, 1 @By, 1, ®
Bs, such that the sequencgs Bs,. - - -, Bs, 1, Bjs Bspras - -+ Bsy1s Brs Bsgpas - - - Bs, @nd
(Bj1» - - - Bj,) coincide other cyclic permutation.

Monomialsy;, ® - - - ®a;, @B, ®---® B, anda;l®- @0, ®ﬂ}1®' . -®ﬁ;{ are called
equivalent, if | J*_, i, = ' i, andU' _, jr = U1 Jr By [0y, ® - - - ® B,] denote the
equivalence class @f;; ® --- ® B;,. Atensor serie§” = Y c(i1, ..., ikl j1, ..., jo)ai; ®

-~ ® bj, generates a serie§| = ) cli1, ..., iklj1, ..., jellai; ® --- ® bj,], where the
sum is taken over equivalence classes of monomialgfand . ., il j1, . . ., je] is the sum
of all coefficientsc(i1, ..., j¢), corresponding to monomials from the equivalence class
[ail Q- ®bje]-

We say that a tensor serigs = > c(i1, ..., iklj1, ..., jooi, @ - @ ax ® Bj; ®

- ® Bj, is astructure series on a spaceéd = A @ B with an involutionx and bases
{a1, ..., 0,181, ..., Bu}, if the following conditions hold.

Axiom 6.1. The coefficients:(i1, ..., jilj1, ..., j¢) are invariant under all permutations
of {i;} and cyclic permutations dfj,}.

Axiom 6.2. F* = F.

Axiom 6.3. The coefficients(i, j|) ande(|i, j) generate nondegenerate matrices FgY’
andF,fiﬂ ’ denote the inverse matricesad, j|) andc(|i, j), respectively.

Axiom 6.4.

n 3 3 3 3
3 Fa ®F:11po[q 3 Fa — Z 8 Fa ®F§lpaq 8 Fa

- Oat; ot j0ax ot 0oty ey ] O 0ax jOcx dag 0ot oty

whereF, is the part of the tensor seriég consisting from all monomials without mono-
mials, containing somg;.

Axiom 6.5.

m 33 F

o pirfs_OF i[ phobs O }
~ 8/3ia,8j8/3p 3/3q3/3k3/36 o 3,3@3/3:3/3;7 P 9B,080Bx

Axiom 6.6.

i 2F B3F 2F 3F
Y @B | = [ S e R |
L dog aﬁp aﬁq aB; aﬂj dog aﬂp aﬂq aﬂjaﬂi

Axiom 6.7.

3°F B3F ?F B3F °F
Z ® F;,,aq _ Z ® Ff[) By ® F}?r Be .
L 0Py oar oty dcr; Oct ; ;0B 98408k 9B 0P dar ;
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We say that the conditions froAxioms 6.1-6.7arestructure equations. They are non-
commutative analogues of associativity equati@n$4].

6.2 Any noncommutative tensor seriBs= > c(i1, ..., iglj1, ..., jO)oi, @ - - Qi ®
Bj, ® --- ® B, generates a family of tensopg, : A®” @ g% — C, where f/,(a;; ®
C®0, ®Bj Q- ®Bj,) =clit, ..., ir|j1s ey Jo) PU X, oo X Vg o Vi) F =
i ®- - ®xi, @ y; ®---®Yj).

Theorem 6.1. A tensor series F is a structure series, iff the collection of tensors
{{x1, ..., %, ¥1,..., ye)F} forms a system of disk correlation functions. Any system of
disk correlation function is generated by a structure series.

Proof. Formal calculation demonstrates equivalence of the axioms of disk correlation func-
tions and the axioms of structure series with the same numbers. |

7. Noncommutative Frobenius manifolds

7.1 According td6], any solution WDVV equation generates a special deformation of
Frobenius algebra. In this section we associate to any solution of structure equation some
deformation of extended Frobenius algebra.

Definition 7.1. Extended Frobenius algebta= {H = A + B, (x, y), x — x*} is a finite
dimensional associative algehfiaoverK endowed with a decompositidii = A + B of H
into a direct sum of vector spaces; an invariant symmetric bilinear ternm) : H @ H —
K that is(x, y) = (v, x) and(xy, z) = (x, y2); an involutive anti-automorphistif — H,
denoted by — x*; such that the following axioms hold:

(1) A is a subalgebra belonging to the centre of algdtra

(2) Bis atwo-sided ideal off (typically noncommutative);

(3) restrictions(x, y)|4 and(x, y)|p are nondegenerate scalar products on algetrasd
B, resp.

(4) aninvolutive anti-automorphism preserves the decompoditien A + B and the form
(x,y)onH,i.e.A* = A, B* = B, (x*, y*) = (x, y).

A full description of semisimple extended Frobenius algebras @véollows from
[3, Section 2]

The structure tensorgy » = (o', "), Fg g = (B, B”), Rap = (@, B), So,a" 0" =
(O[/,O[//,Otm), T/S’,ﬁ”,ﬁ”’ — (,3/,3//1/3///), Raﬁ’ﬂ” — (Olﬂ/,,BN), Ia’,a” — ((O[/)*,Ol//), Iﬁ’,ﬁ” —
((BH*, B7), uniquely describe an extended Frobenius alggBfaHere we denote by
a,a’,a” andpg, B/, B” the elements of the basés, ..., a,} C A and{B1,...8x} C B,
respectively.

7.2 Later we assume that the fiéds the field of real or complex numbers. Associate a
deformation of extended Frobenius algebras to a structure series on dspadet B with
involution* : H — H and a basi$o, ..., B¢} C H. First consider the coordinates éh
thatassociate the element s'a;+1/ 8;to collectiongs?, ..., s" |1, ..., ") € K"+ The
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correspondences — s, B; — t' and (tensor mult|pl|cat|on)—> (number multiplication)
map tensor serieB(«as1, . . ., Bin) to formal number serieB(sL, ..., ™). By definition, put
Faiotj = C(i7 Jl)i Fﬁiﬂj - C(|l, J)r IO(,‘O(_,‘ = Falc{ ’ Iﬁlﬂj - Fﬂ ﬂ* Let{FC‘za/} and{Fﬁzﬂ]} be
the inverse matrix fofFy,q;} and{ Fg g, }, respectlvely Put

RF ., — o°F rPoo__OF TF, o = i
wip; = 3011'3,3]‘ , aijog aaifiajaak’ BiBiBx — Bﬁi8ﬂj8,3k s
9°F oF
RE g5 = FPrPq :
iPibe ™ da;0B, 9B40B0Bx

Theorem 7.1. Let F be a structure series. Then at convergence poi nts the tensors Fu,q;,
> pF 1 Q F T

Fﬂiﬁj' Iﬂtiaj' Iﬂiﬂj’ Raiﬂj = Ra,-ﬂj(s S ST Safﬂtjotk Scc,ajotk( seees M), Tﬂfﬂjﬂk =

N 1 N . 1 ) .

Tgﬂjﬂk(s s ™), Ryigige = R(f,.ﬁjﬁk(s , ..., ™) define an extended Frobenius algebra.

Proof. We shall raise indices of tensors, using the tengo¥§/ and Fﬁfﬁj.AIn the case
of nonsymmetric tensors we always raise the last index. By definitionSap&u;Wz =

>, 840 Seaar T g = 30 T4 o, T, pup. It follows from [3] that the above theorem is
equivalent to the following condmons.

(1) matricesFy,q; and Fﬁ ; are nondegenerate;
(2) tensorsSa o andSw ., Are symmetric with respect to all permutations;
(3) tensorsly, p;p @and T, B;pepe @r€ symmetric with respect to cyclic permutations;

4) Raﬁl,ﬂz = Rg/fﬂ”ﬂl,ﬂ/z;

(5) RY Sw .oy = = RERL Ty

(6) Ra pr.bs = R, pu /

(7) 1¢ Io/ ap = Foyan) igliﬂ’,ﬁz = Fp1.po;

(8) Iotl ay = Iaz o ?/31 B2 = ?/32 B1s ?a Rtx B = iﬂ Ra B
A ,\ TN //,\ﬂ///A
Q) T T 1% S ot = Sav.apass 1y I, 1, Tor . = Ty .
All these conditions directly follow from our definition and the axioms of structure
series. 0

Thus, structure series generate an extended Frobenius algebra in the péintstafre
the series froniTheorem 7.1converge. This defines a deformation of extended Frobe-
nius algebra, i.e. some analogue of Frobenius manj&}ltbr (honcommutative) extended
Frobenius algebras.

8. Examples

8.1 For dimB = 0, Theorems 5.1 and 6det over into Theorem lll, Section 4.3 from
Manin [9] that claim that cohomological field theory is equivalent to formal Frobenius
manifolds.
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Noncommutative Frobenius manifolds with ddn= 0, dim B = 1 are Frobenius mani-
folds of range 1. They are described by formal sefig?) [9].

For dmA = 1, dmB = 1. Put{«", ") = (a, ..., o, B, ..., B). AXiom 6.7 demon-
strates that all correlators are determined by correldtdts (") and(«, B).

Suppose, for example th&d, @) = (@, 0, a) = (8, 8) = (B, 8, 8) = 1 and(") =
(™) = 0 form > 3. Then according té\xiom 6.7, (¢®) (e, B) = (8%)(e, B) (e, B) and
thus(a, ) is equal to 0 or 1. MoreoveAxiom 6.7 gives(e3) (%) = 2(a, B) (Y (a, B) +
2(a, B)(B3) («, B2) and thuge, B2) = 0. Analogously we prove thét, ") = 0form > 1.
On the other handixiom 6.7 gives () (2, B) = (a, B)(aB) (e, B3) + 2(c?, B)(, B)(B3)
and thus(e?, 8) = 0. Analogously we prove thdt”, ) = 0 fornm > 1.

Thus, if the restriction of structure serieon A andB is (1/2)a®2+a®3 and(1/2) B2+
B3 thenF = (1/2)a®? + a®3 + (1/2)b%2 + b®3 + £a ® B, wheret € {0, 1}.

8.2 Inanalogy witf12] any extended Frobenius algeBita= {H = A+B, (-, ), x} with
unite 1 generates some system of disk correlation functions by theatile. ., o, g1,
LBy =@t atB L B ).

8.3 Accordingtd4], a noncommutative Frobenius manifold in our sense is generated by
a topological Landay—Ginzburg theory Bftype with 2D-brane conditions.
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