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Abstract

We construct some extension of cohomological field theories (stable field theory). The stable
field theory is a system of homomorphisms to some vector spaces generated by spheres and disks
with punctures. It is described by a formal tensor series, satisfying to some system of “differential
equations”. In points of convergence the tensor series generate special noncommutative analogues
of Frobenius algebras, describing ‘open-closed’ topological field theories.
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1. Introduction

Cohomological field theories were proposed by Kontsevich and Manin[7] for descrip-
tion of Gromov–Witten classes. They proved that cohomological field theory is equivalent
to formal Frobenius manifold. Formal Frobenius manifold is defined by a formal series
F , satisfying the associative equations[5,14]. In points of convergence the seriesF de-
fines Frobenius algebras. The set of these points forms a Frobenius manifold as regards to
Dubrovin[6].

Cohomological field theory is a system of special homomorphisms to spaces of cohomol-
ogy of Deline–Mumford compactifications for moduli spaces of complex rational curves
(Riemann spheres) with punctures. In this paper it is constructed some extension of coho-
mological field theories. This extension (stable field theory) is a system of homomorphisms
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to some vector spaces generated by disks with punctures. I conjecture that they describe
relative Gromov–Witten classes.

A stable field theory is equivalent to some analogue of a formal Frobenius manifold.
This analogue is defined by formal tensor series (structure series), satisfying some system
of “differential equations” (including the associativity equation). In points of convergence
the structure series defineextended Frobenius algebras. They are special noncommuta-
tive analogue of Frobenius algebras. Extended Frobenius algebras describe ‘open-closed’
topological field theories[8] of genus 0 in the same way as Frobenius algebras describe
Atiyah–Witten 2D topological field theories[2,13]. Thus, structure series are noncom-
mutable analogues of formal Frobenius manifolds.

In Sections 2 and 3it is proposed a general axiomatic of topological field theories over
functors. This class involves 2D Atiyah–Witten[2,13], ‘open-closed’[8], Klein topological
field theories[3] and cohomological field theories[7,9].

In Section 4it is constructed and investigated astabilising functor on a category of
spheres with punctures, disks with punctures and its disconnected unions. For spheres this
construction is liked to modular graphs[9] and describes a Cohomological functor for
complex rational curves. The stable field theories are defined as topological field theories
over stabilising functors.

In Sections 5 and 6we prove that stable field theories are in one-to-one correspondence
to systems of disk correlation functions. Its “generating functions” are the structure series.

In Sections 7 and 8it is demonstrated that structure series generate extended Frobenius
algebras in their convergence points and it is constructed some examples.

2. 2D categories

2.1 In this papera surface denotes a compact surface with or without boundary. Its
connected boundary component is calleda boundary contour of the surface. Any orientable
connected surface is homeomorphic to a sphere withg handles ands holes. Such surface
is calleda surface of type (g, s,1). Any nonorientable connected surface is homeomorphic
to either a projective plane witha handles ands holes or a Klein bottle witha handles and
s holes. Such surface is calleda surface of type (g, s,0), whereg = a + (1/2) in the first
case andg = a+ 1 in the second case.

A surface with a finite number of marked points is calleda stratified surface. Marked
points are also calledspecial points of the stratified surface. Two stratified surfaces are
calledisomorphic, if there exists a homeomorphism of the surfaces, generating a bijection
between their special points.

By |S| we denote the cardinality of a finite setS. LetΩ be a surface of the type(g, s, ε)
andω1, . . . , ωs be its boundary contours. LetS ⊂ Ω be a finite set of marked points and
m = |S∩(Ω\∂Ω)|,mi = |S∩ωi|. Then the collectionG = (g, ε,m,m1, . . . , ms) is calleda
type of connected stratified surface(Ω, S). A connected stratified surface of typeG is called
trivial, if µ = 2g+m+s+ (1/2)∑mi−2 ≤ 0. It is easy to prove the following statement.

Lemma 2.1. Any trivial stratified surface is isomorphic to a stratified surface from the
list:
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(1) a sphere S2 without special points (µ = −2);
(2) a projective plane RP2 without special points (µ = −1);
(3) a disk D2 without special points (µ = −1);
(4) a sphere (S2, p) with a single interior special point p (µ = −1);
(5) a disk (D2, q)with a single special boundary point and without special interior points

(µ = −1/2);
(6) a sphere (S2, p1, p2) with two interior special points (µ = 0);
(7) a projective plane (RP2, p) with a single interior special point (µ = 0);
(8) a torus T 2 without special points (µ = 0);
(9) a Klein bottle Kl without special points (µ = 0);

(10) a disk (D2, p)with a single interior special point and without boundary special points
(µ = 0);

(11) a disk (D2, q1, q2) with two boundary special points and without interior special
points (µ = 0);

(12) a Möbius band Mb without special points (µ = 0);
(13) a cylinder Cyl without special points (µ = 0).

Let Ω be a stratified surface. A generic not self-intersecting curveγ ⊂ Ω is calleda
cut. Generic means thatγ has no special points and either it is a (closed) contour without
boundary points ofΩ or it is a segment, whose ends belong to the boundary ofΩ and
all interior points are interior points of the surface. The cuts form nine topological classes
described in[3]. A set of pairwise nonintersecting cuts is calleda cut system.

Let Γ be a cut system of a stratified surfaceΩ. Consider compactificatioñΩ of Ω \ Γ
by pairs(x, c), wherex ∈ γ ⊂ Γ andc is a coorientation of the cutγ in a neighbourhood
of x. Denote byΩ/Γ a surface obtained by contracting each connected componentCi of
Ω̃ \ (Ω \ Γ) into a pointci. We assume thatΩ# = Ω/Γ is a stratified surface. Its special
points are the special points ofΩ and the pointsci.

2.2 In this section, following[3], we define a tensor categoryC of stratified surfaces
with a setO of local orientations of special points. Aset of local orientations means that
for any special pointr ∈ Q of stratified surfaceΩ we fix an orientation or of its small
neighbourhood.

A setO of local orientations is saidadmissible, iff eitherΩ is orientable surface and all
local orientations are induced by an orientation ofΩ orΩ is nonorientable surface and all
local orientations at all special points from any boundary contourωi are compatible with
one of the orientations ofωi. Moreover, we consider that any boundary contour contain at
least one special point.

Lemma 2.2. Let (Ω′,O′) and (Ω′′,O′′) be two pairs, consisting of stratified surfaces and
admissible sets of local orientations at special points. If stratified surfaces Ω′ and Ω′′ are
isomorphic then there exists an isomorphism φ : Ω′ → Ω′′ such that φ(O′) = O′′.

The proof follows from standard properties of surfaces.
Pairs(Ω,O)of stratified surfacesΩwith sets of local orientationsOat their special points

areobjects of the basic category C. Morphisms are any combinations of the morphisms of
types (1)–(4).
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(1) Isomorphismφ : (Ω,O) → (Ω′,O′). By a definition,φ is an isomorphismφ : Ω → Ω′
of stratified surfaces compatible with local orientations at special points.

(2) Change of local orientationsψ : (Ω,O) → (Ω,O′). Thus, there is one such morphism
for any pair(O,O′) of sets of local orientations on a stratified surfaceΩ.

(3) Cutting η : (Ω,O) → (Ω#,O#). The morphismη depends on a cut systemΓ endowed
with orientations of all cutsγ ∈ Γ . Ω# is defined as contracted cut surfaceΩ/Γ .
Stratified surfaceΩ# inherits special points ofΩ and local orientations at any of them.
The orientations of cuts induce the local orientations at other special points.

Define a ‘tensor product’ θ : (Ω′,O′)× (Ω′′,O′′) → (Ω,O) of two pairs(Ω′,O′) and
(Ω′′,O′′) as their disjoint union(Ω,O) = (Ω′ �Ω′′,O′ �O′′).

Subcategories of the basis categoryC are called 2Dcategories. The basic categoryC has
subcategoriesCg,s,ε, whereg is either an integer or half-integer non-negative number or
∞, s is an integer non-negative number or∞ andε = 0,1. The objects ofCg,0,0 are all
pairs(Ω,O), whereΩ is a stratified surface of type(g̃, ε,m) andg̃ ≤ g. Fors > 0 objects
of Cg,s,0 are all pairs(Ω,O), whereΩ is a stratified surface of type(g̃, ε,m,m1, . . . , ms̃),
g̃ ≤ g, ands̃ ≤ 2(g − g̃) + s. Thus,C = C∞,∞,0. The categoryCg,s,1 is a subcategory of
Cg,s,0. Its objects are all objects(Ω,O) of Cg,s,0 such thatΩ is an orientable surface. Denote
byCg,s,1,0 subcategory ofCg,s,1, consisting of(Ω,O), whereO is generated by some global
orientation ofΩ. This global orientation is marked by the same symbolO.

2.3 Below we define astructure functor (Ω,O) → V(Ω,O) from the basic category of
surfaces to the category of vector spaces[3].

Let{Xm|m ∈ M} be a finite set ofn = |M| vector spacesXm. The action of the symmetric
groupSn on the set{1, . . . , n} induces its action on the linear space(⊕σ:{1,...,n}↔MXσ(1) ⊗
· · · ⊗ Xσ(n)), an elements ∈ Sn brings a summandXσ(1) ⊗ · · · ⊗ Xσ(n) to the summand
Xσ(s(1)) ⊗ · · · ⊗Xσ(s(n)). Denote by⊗m∈MXm the subspace of all invariants of this action.

The vector space⊗m∈MXm is canonically isomorphic to a tensor product of allXm in any
fixed order, the isomorphism is a projection of the vector space⊗m∈MXm to the summand
that is equal to the tensor product ofXm in a given order. Assume that allXm are equal
to a fixed vector spaceX. Then any bijectionM ↔ M ′ of sets induces the isomorphism
⊗m∈MXm ↔ ⊗m′∈M′Xm′ .

LetA andB be finite dimensional vector spaces over a fieldK endowed with involutive
linear transformationsA → A andB → B, which we denote byx �→ x∗ (x ∈ A) and
y �→ y∗ (y ∈ B), resp.

Let (Ω,O) be a pair, consisting of a stratified surfaceΩ and a setO of local orientations
at its special points. Denote byΩa the set of all interior special points and byΩb the set
of all boundary special points. Put alsoΩ0 = Ωa � Ωb. Assign a copyAp of a vector
spaceA to any pointp ∈ Ωa and a copyBq of a vector spaceB to any pointq ∈ Ωb. Put
V(Ω,O) = VΩ = (⊗p∈ΩaAp)⊗ (⊗q∈ΩbBq).

The groupΣ(Ω) of transpositions ofΩb acts natural onVΩ.
For any morphism of pairs(Ω,O) → (Ω′,O′) define a morphism of vector spaces

VΩ → VΩ′ as follows:

(1) An isomorphismφ : (Ω,O) → (Ω′,O′) induces the isomorphismφ∗ : VΩ →
VΩ′ becauseφ generates the bijectionsΩa ↔ Ω′

a andΩb ↔ Ω′
b of sets of special

points.
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(2) For a change of local orientationsψ : (Ω,O) → (Ω,O′) define a linear mapψ∗ :
VΩ → VΩ as(⊗r∈Ω0ψr), where for anyr ∈ Ω0

ψr(x) =
{
x if or = o′

r,

x∗ if or = −o′
r.

(3) In order to define a morphismη∗ : VΩ → VΩ# for any cutting morphismη : (Ω,O) →
(Ω#,O#) we need to fix elementŝKA,∗ ∈ A⊗A, andK̂B,∗ ∈ B⊗B andU ∈ A. (The
notation will be clear from the sequel.)

Evidently, it is sufficient to defineη∗ for an arbitrary oriented cutγ ⊂ Ω. In this case we
have a canonical isomorphismVΩ# = VΩ ⊗X, where

X =



A⊗ A if γ is a coorientable contour,

B⊗ B if γ is a segment,

A if γ is a noncoorientable cut.

Forx ∈ VΩ putη∗(x) = x⊗ z, wherez is eitherK̂A,∗, or K̂B,∗, orU resp.
Finally, for a ‘tensor product’θ : (Ω′,O′) × (Ω′′,O′′) → (Ω′ �Ω′′,O′ �O′′) there is

evident canonical linear mapθ∗ : VΩ′ ⊗ VΩ′′ → VΩ′�Ω′′ .

3. Topological field theory over a functor

3.1 LetR be a category of triples(W, ρ,Σ), whereW is a vector spaces over a fieldK,Σ

is a group, andρ : Σ → Aut(W) is a homomorphism. Morphism(W, ρ,Σ) → (W ′, ρ′,Σ′)
is a pair of isomorphisms(ϑW : W → W ′, ϑΣ : Σ → Σ′) such thatϑWρ = ρ′ϑΣ.

Let T be a functor from a 2D category toR such thatT(Ω,O) = (W(Ω,O), ρ(Ω,O),
Σ(Ω,O)), whereΣ(Ω,O) = Σ(Ω) is the group of transpositions ofΩb.

We consider thatT(Ω,O) = (K, ρ,Σ), whereρ(Σ) is the identical map, ifΩ is a trivial
stratified surface, andT(π) is the identical morphism, ifπ is a morphism of trivial stratified
surfaces.

A topological field theory over T is a set

F = {A, x �→ x∗, B, y �→ y∗, T, Φ(Ω,O)},
where(A, x �→ x∗) and(B, y �→ y∗) are finite dimensional vector spaces overK endowed
with involute linear transformation and{Φ(Ω,O)} is a family of linear operatorsΦ(Ω,O) :
VΩ → W(Ω,O), whereVΩ is the image of(Ω,O) by the structural functor for{A, x �→
x∗, B, y �→ y∗} andT(Ω,O) = (W(Ω,O), ρ(Ω,O),Σ(Ω,O)).

The setF is called a topological field theory, if the following axioms are satisfied:

(0) Algebraic invariance
For anyσ ∈ Σ(Ω,O) it is required that

Φ(Ω,O)(σ(x)) = ρ(Ω,O)(σ)(Φ(Ω,O)(x)).
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(1) Topological invariance
For any isomorphism of pairsφ : (Ω,O) → (Ω′,O′) it is required that

Φ(Ω′,O′)(φ∗(x)) = T(φ)Φ(Ω,O)(x).
(2) Invariance of a change of local orientations

For any change of local orientationsψ : (Ω,O) → (Ω,O′) it is required that

Φ(Ω,O′)(ψ∗(x)) = T(ψ)Φ(Ω,O)(x).
(3) Nondegeneracy

Define first a bilinear form(x, x′)A on the vector spaceA. Namely, let(Ω,O) be a
pair, whereΩ is a sphere with two interior special pointsp, p′ and the setO = {op, op′ }
is such that local orientationsop, op′ induce the same global orientations of the sphere.
Put(x, x′)A = Φ(Ω,O)(xp ⊗ x′

p′), wherexp andx′
p′ are images ofx ∈ A andx′ ∈ A in

Ap andAp′ resp. The correctness of this definition follows fromAxioms 5.1 and 5.2.
Evidently,(x, x′)A is a symmetric bilinear form.

Similarly, define a bilinear form(y, y′)B on the vector spaceB, using a disc with
two boundary special pointsq, q′ instead of a sphere with two interior special points
p, p′. As in the previous case, local orientationsoq, oq′ must induce the same global
orientations of the disc. Evidently,(y, y′)B is a symmetric bilinear form.

It is required that forms(x, x′)A and(y, y′)B are nondegenerate.
(4) Cut invariance

Axioms 5.1–5.3allow us to choose elementsK̂A,∗ ∈ A×A, K̂B,∗ ∈ B×B andU ∈
A. Indeed, any nondegenerate bilinear form on the vector spaceX canonically defines
[3, Section 2]the tensor Casimir element̂KX ∈ X ⊗ X. Taking forms(x, x′)A,∗ =
(x, x′∗)A and(y, y′)B,∗ = (y, y′∗)B, we obtain elementŝKA,∗ andK̂B,∗.

A linear formΦ(Ω,O) for a projective planeΩ with one interior special point is an
element of the vector space dual toA. We denote byU the image of this element inA
under the isomorphism induced by nondegenerate bilinear form(x, x′)A.

We shall use just these elements for morphismsη∗ of type (3).
For any cut systemΓ endowed with orientations of all cuts it is required that

Φ(Ω#,O#)(η∗(x)) = T(η)Φ(Ω,O)(x).
(5) Multiplicativity

For the productθ : (Ω′,O′) × (Ω′′,O′′) → (Ω′ � Ω′′,O′ � O′′) of any two pairs
(Ω′,O′) and(Ω′′,O′′) it is required that

Φ(Ω1�Ω2,O1�O2)(θ∗(x1 ⊗ x2)) = Φ(Ω1,O1)(x1)⊗Φ(Ω2,O2)(x2).

3.2 Let us consider now some example of topological field theory on 2D categories. In
this section we consider only functorsT(Ω,O) = (W(Ω,O), ρ(Ω,O),Σ(Ω,O)), such
thatρ(Ω,O)(σ) is the identical map for allσ ∈ Σ(Ω,O).
(1) Topological field theory on Cg,s,ε (over trivial functor)

Consider the functor, corresponding the fieldK to all objects(Ω,O) and correspond-
ing identical map to any morphism:
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(a) This givesan Atiayh–Witten 2D topological field theory [2,13] for the category
C∞,0,1 and involutionx∗ = x.

(b) The categoryC∞,∞,1 and the involutionsx∗ = x, y∗ = y gives ‘an open-closed’
topological field theory in the sense of Lazaroiu[8].

(c) The categoryC∞,∞,0 gives a Klein topological field theory in the sense of[3]
(without units).

(2) Cohomological field theories on Cg,s,ε

Recall that a Klein surface of type(g, s, ε) is a surface of type(g, s, ε), endowed with a
dianalytic structure, i.e., an atlas with holomorphic and antiholomorphic transitions func-
tions[1]. It is equivalent to a real algebraic curve (for an information about real algebraic
curves, see[11]). A Klein surface of typeG = (g, ε,m,m1, . . . , ms) is called a Klein
surface with special points of typeG. The moduli space of Klein surfaces is constructed
in [10]. LetH∗(M̄G,K) be a cohomological algebra of Deline–Mumford compactification
of the space of Klein surfaces of typeG. An identification of special points gives some
embeddingsM̄G1 × M̄G2 → M̄G andM̄G1 → M̄G by analogy with[9].

Cohomological field theory in our conception is defined as the topological field theory
over the functorT that associate the algebraH∗(M̄G,K)with each object(Ω,O), whereG
is the type ofΩ, and associate the homomorphisms generated by the embeddingsM̄G1 ×
M̄G2 → M̄G andM̄G1 → M̄G with the cutting morphisms. Herex∗ = x, y∗ = y and the
other morphisms are the same as that for the trivial functor.

This definition takes the (complete) cohomological field theory as regards to[9] for
subcategoriesC0,0,1 (C∞,0,1).

3.3 According to[9], the cohomological field theory overC0,0,1 generate some defor-
mations of Atiayh–Witten 2D topological field theory in genus 0. These deformations are
described by formal Frobenius manifolds, i.e., formal solutions of WDVV equations[5,14].

Our goal is the construction of a functor onC0
0,1,1 such that topological field theory over

this functor generate deformations of open-closed topological field theories in genus 0. We
shall prove that these deformations are described by formal solutions of some noncommu-
tative analogues of WDVV equations.

4. Stable field theories

4.1 LetΩ = (Ω,O) be a oriented stratified surface andO be generated by some orienta-
tion. (Here and later we omit the mark of orientationO, if it is constant in the construction).
The orientation ofΩ gives a natural sense to inequalitiesb1 < b2 < b3, for points from
a connected component of the boundary ofΩ. ForC ⊂ Ωb denote byΣ◦(C) the group
of transpositionsσ ∈ Σ(Ω), such thatσ(b1) < σ(b2) < σ(b3) if b1 < b2 < b3 and
b1, b2, b3 ∈ C.

A pair (Γ, σ), whereΓ ⊂ Ω is a cut system andσ ∈ Σ(Ω) is calleda tiling, if all
connected components ofΩ/Γ are nontrivial. A tiling(Γ, σ), whereΓ = ∅ is also assumed
and it is calledempty tiling.

Two tiling (Γ ′, σ′) and(Γ ′′, σ′′) are calledisomorphic, if there exists a homeomorphism
ψ : Ω → Ω, preserving the orientation, movingσ′ to σ′′ and such thatψ(Γ ′) = Γ ′′. An
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isomorphic class of a tiling is calleda diagram. Let [Γ, σ] be the diagram corresponding to
a tiling (Γ, σ).

Denote byK(Ω) the vector space overK generated by all diagrams ofΩ.
Consider a tiling(Γ, σ), corresponding to a diagramT ∈ K(Ω). A connected com-

ponent ofΩ \ Γ is calleda vertex of the tiling. Denote byV(T) the set of all vertices
of T .

LetΩTv be the connected component ofΩ/Γ , corresponding to a vertexv. LetATv and
BTv be the set of interior and boundary special points ofΩTv . We can associateσ∗ ∈ Σ(Ω)
to anyσTv ∈ Σ(ΩTv ), considering thatσ∗(b1) < σ∗(b2) < σ∗(b3) if b1, b2, b3 /∈ ΩTv belong
to the same connected component ofΩ \ Γ andb1 < b2 < b3. Moreover, we can consider
any cut system onΓ Tv ∈ ΩTv as a cut system onΩ. Thus a diagramS = [Γ Tv , σ

T
v ] ∈ K(ΩTv )

generate a diagram(T, v, S) = [Γ ∪ Γ Tv , σ∗σ] ∈ (K(Ω)).
4.2 A tiling (Γ, σ) is calledsimple, if Γ consist of one cut. A simple tiling is called

A-tiling, if Γ is a closed contour homotopic to zero,B-tiling, if Γ is a segment, dividing
the surface,C-tiling, if Γ is a closed contour nonhomotopic to zero, andD-tiling, if Γ is
a segment, nondividing the surface. Diagrams corresponding toA(B,C,D), empty tillings
are calledA(B,C,D), empty diagram.

LetC1 andC2 be subsets of a surfaceΩ. By rA(C1|C2) (respectively,rB(C1|C2)) denote
the set ofA- (respectively,B-) diagrams corresponding to(Γ, σ), whereΓ divideC1 and
C2.

For a sphereΩ anda1, a2, a3, a4 ∈ Ωa put rΩ(a1, a2|a3, a4) = rA(a1, a2|a3, a4).
LetΩ be a disk,b1, b2, b3, b4 ∈ Ωb andb1 < b2 < b3 < b4. Denote byrΩ(b1, b2|b3, b4)

the set of all diagrams belonging torB(σ(b1)∪ σ(b2)|σ(b3),∪σ(b4)) and corresponding to
(Γ, σ), whereσ ∈ Σ◦(σ(b1)∪σ(b2)∪σ(b3)∪σ(b4))∩Σ(Ωb−(σ(b1)∪σ(b2)∪σ(b3)∪σ(b4))).

Let Ω be a diska ∈ Ωa, b1, b2 ∈ Ωb, σ ∈ Σ(Ω). Denote byrΩ(b1, b2|a) the set of
all diagrams belonging torB(σ(b1) ∪ σ(b2)|a) and corresponding to(Γ, σ), whereσ ∈
Σ(Ωb − (σ(b1) ∪ σ(b2))) and any endsb of Γ satisfyσ(b1) < b < σ(b2).

Let Ω be a diska1, a2 ∈ Ωa, b ∈ Ωb. Put rΩ(a1, a2|b) = rA(a1, a2|b). Denote by
rΩ(a1, b|a2)rΩ(a2, b|a1) the diagrams corresponding to(Γ1 ∪ Γ2, σ) where(Γ1, σ) from
rB(a1 ∪ σ(b)|a2), (Γ2, σ

′′) from rB(a2 ∪ σ(b)|a1), andσ ∈ Σ(Ωb − b).
Let Ω be a cylinder. Denote byrσΩ(C) and rσΩ(D) the set of allC- andD-diagrams

respectively.
Denote byH∗(Ω) the set of linear functionsl : K(Ω) → K, that is equal to 0 on all

elements in the forms:

(1) [φ(Γ), σ(φ)σ] − [Γ, σ]
for any tiling (Γ, σ) of Ω, any isomorphismφ : (Ω,O) → (Ω,O) and the transpo-

sitionσ(φ) = φ|Ωb
(2)

∑
S∈r

ΩTv
(a1,a2|a3,a4)

(T, v, S)−
∑

S∈r
ΩTv
(a2,a3|a4,a1)

(T, v, S)

for any diagramT ∈ K(Ω), anyv ∈ V(T) such thatΩTv , is a sphere, and any pairwise
different pointsa1, a2, a3, a4 ∈ (ΩTv )a.

(3)
∑

S∈r
ΩTv
(b1,b2|b3,b4)

(T, v, S)−
∑

S∈r
ΩTv
(b2,b3|b4,b1)

(T, v, S)
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for any diagramT ∈ K(Ω), anyv ∈ V(T) such thatΩTv , is a disk and anyb1, b2, b3, b4 ∈
(ΩTv )b such thatb1 < b2 < b3 < b4.

(4)
∑

S∈r
ΩTv
(b1,b2|a)

(T, v, S)−
∑

S∈r
ΩTv
(b2,b1|a)

(T, v, S)

for any diagramT ∈ K(Ω), anyv ∈ V(T) such thatΩTv , is a disk anya ∈ (ΩTv )a,
and any different pointsb1, b2 ∈ (ΩTv )b.

(5)
∑

S∈r
ΩTv
(a1,a2|b)

(T, v, S)−
∑

S∈r
ΩTv
(a1,b|a2)rΩTv

(a2,b|a1)

(T, v, S)

for any diagramT ∈ K(Ω), anyv ∈ V(T) such thatΩTv is a disk withn+ 2 interior
andm+ 1 boundary marked points,a ∈ (ΩTv )a, and distinctb1, b2 ∈ (ΩTv )b.

(6)
∑

S∈r
ΩTv
(C)

(T, v, S)−
∑

S∈r
ΩTv
(D)

(T, v, S)

for any diagramT ∈ K(Ω), and anyv ∈ V(T) such thatΩTv , is a cylinder withn
interior marked points, withm + 2 boundary marked points and also any boundary
contour contained marked points.

Define the actionρ(Ω) : Σ(Ω) → Aut(H∗(Ω)) by σ(l)(Γ, σ′) = l(Γ, σ′σ).
Extend our definitions ofK(Ω),H∗(Ω) andρ(Ω) on disconnected sumsΩ = Ω1 �Ω2

by K(Ω) = K(Ω1) ⊗ K(Ω2), H∗(Ω) = H(Ω1)
∗ ⊗ H(Ω2)

∗. The actionsρ(Ω1) and
ρ(Ω2) generate the actionρ(Ω). This gives a possible to defineH∗(Ω) andρ(Ω) for any
disconnected sums of oriented sphere and disks.

Let γ be a simple cut onΩ andΩ# = Ω/γ. Denote byKγ(Ω) ⊂ K(Ω) the subspace
generated by all diagrams containing the cutγ. A diagramT ∈ K(Ω#) generates a diagram
T̃ ∈ Kγ(Ω). This correspondence defines a monomorphismεγ : K(Ω#) → Kγ(Ω) ⊂
K(Ω) and thus a homomorphismε∗γ : H∗(Ω) → H∗(Ω#).

4.3 Now we introducea stabilising functorFon the categoryC0
0,2,1 with structure functor,

generated by arbitrary data{A, x �→ x∗, B, y �→ y∗}.
For local orientationsO, generated by a global orientation we putF(Ω,O) = (H∗(Ω),

ρ(Ω),Σ(Ω)).
For isomorphismφ : (Ω,O) → (Ω′,O′) denote byF(φ) : H∗(Ω,O) → H∗(Ω′,O′),

the isomorphism that it generates.
Change of global orientationψ : (Ω,O) → (Ω,O′) is generated by an isomorphism

φ : (Ω,O) → (Ω′,O′). PutF(ψ) = F(φ).
For cutting morphismη : (Ω,O) → (Ω#,O#) by a cutγ ⊂ Ω we consider thatF(η) is

generated byε∗γ .
By definition, topological field theory

N = {A, x �→ x∗, B, y �→ y∗,F, Φ(Ω,O)}
with values in a stabilising functorF is called astable field theory.

Remark 4.1. It follows from Manin[9] that the codiagram spaceH∗(Ω) of a sphere with
n special points coincides with the cohomological algebraH∗(M̄0,n,K) of the Deligne–
Mumford compactification of moduli space of spheres withn punctures. Thus, forx∗ = x
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stable field theory on 2D categoryC0,0,1 coincides with the Kontsevich–Manin cohomolog-
ical field theory[7].

5. System of disk correlation functions

5.1 LetA andB be vector spaces with bases{α1, . . . , αn} ⊂ A, {β1, . . . , βm} ⊂ B and
involutionsx �→ x∗, y �→ y∗ (x, x∗ ∈ A, y, y∗ ∈ B). Consider a collection of tensors{fr,? :
A⊗r ⊗B⊗? → K}. By 〈x1, . . . , xk, y1, . . . , y?〉 denotefk,?(x1 ⊗ · · ·⊗ xk ⊗ y1 ⊗ · · ·⊗ y?),
wherexi ∈ A, yi ∈ B. We say that this collection is asystem of disk correlation function,
if the following conditions hold.

Axiom 5.1. The value〈x1, . . . , xk, y1, . . . , y?〉 is invariant under any permutation ofxi and
cyclic permutation ofyi.

Axiom 5.2. 〈x1, . . . , xk, y1, . . . , y?〉 = 〈x∗
1, . . . , x

∗
k, y

∗
? , y

∗
?−1, . . . , y

∗
1〉.

Axiom 5.3. The bilinear forms〈xi, xj〉 and〈yi, yj〉 are nondegenerate. Denote byFαi·αj
andFβi·βj the inverse matrices forFαiαj = 〈αi, αj〉 andFβiβj = 〈βi, βj〉.

Axiom 5.4. Let x1, x2, x3, x4, x
i ∈ A andA = {x1, . . . , xr}. Denote by〈A|x1, x2|x3, x4〉

the sum of all numbers as〈x1, x2, x
σ(1), . . . , xσ(s), αi > Fαiαj < αj, x3, x4, x

σ(s+1), . . . ,

xσ(r)〉, where 0≤ s ≤ r, 1 ≤ i, j ≤ n andσ passes through all permutations ofr indices.
The axiom says that

〈A|x1, x2|x3, x4〉 = 〈A|x4, x1|x2, x3〉
for anyA andx1, x2, x3, x4.

Axiom 5.5. Let xi ∈ A, A = {x1, . . . , xr}, y1, y2, y3, y4, y
i ∈ B, andB = {y1, . . . , yp}.

Denote by〈A,B|y1, y2|y3, y4〉 the sum of all numbers as〈xσ(1), . . . , xσ(s), yξ(1), . . . , yξ(p1),

y1, y
ξ(p1+1), . . . , yξ(p2), y2, y

ξ(p2+1), . . . , yξ(p3), βi〉Fβiβj 〈βj, xσ(s+1), . . . , xσ(r), yξ(p3+1),

. . . , yξ(p4), y3, y
ξ(p4+1), . . . , yξ(p5), y4, y

ξ(p5+1), . . . , yξ(p)〉, where 0≤ s ≤ r, 0 ≤ p1 ≤
p2 ≤ p3 ≤ p4 ≤ p5 ≤ p, 1 ≤ i, j ≤ m, σ passes through all permutations ofr indices and
ξ passes through all permutations ofp indices.

The axiom says that

〈A,B|y1, y2|y3, y4〉 = 〈A,B|y4, y1|y2, y3〉
for anyA,B, andy1, y2, y3, y4.

Axiom 5.6. Let x, xi ∈ A, A = {x1, . . . , xr}, y1, y2, y
i ∈ B, andB = {y1, . . . , yp}. De-

note by〈A,B|x|y1, y2〉 the sum of all numbers as〈x, xσ(1), . . . , xσ(s), yξ(1), . . . , yξ(p1), βi〉
Fβiβj 〈βj, xσ(s+1), . . . , xσ(r), yξ(p1+1), . . . , yξ(p2), y1, y

ξ(p2+1), . . . , yξ(p3), y2, y
ξ(p3+1), . . . ,

yξ(p)〉, where 0≤ s ≤ r, 0 ≤ p1 ≤ p2 ≤ p3 ≤ p, 1 ≤ i, j ≤ m, σ passes through all
permutations ofr indices andξ passes through all permutations ofp indices.
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The axiom says that

〈A,B|x|y1, y2〉 = 〈A,B|x|y2, y1〉
for anyA,B, x, andy1, y2.

Axiom 5.7. Letx1, x2, x
i ∈ A,A = {x1, . . . , xr}, y, yi ∈ B, andB = {y1, . . . , yp}. Denote

by 〈A,B|x1, x2|y〉 the sum of all numbers as〈x1, x2, x
σ(1), . . . , xσ(s), αi〉Fαiαj 〈αj, xσ(s+1),

. . . , xσ(r), y, yξ(1), . . . , yξ(p)〉, where 0 ≤ s ≤ r, 1 ≤ i, j ≤ n, σ passes through all
permutations ofr indices andξ passes through all permutations ofp indices.

Denote by〈A,B|x1, y|x2〉〈A,B|x2, y|x1〉 the sum of all numbers as〈x, xσ(1), . . . , xσ(s), y,
yξ(1), . . . , yξ(p1), β1

i , y
ξ(p2+1), . . . , yξ(p3), β2

i , y
ξ(p4+1), . . . , yξ(p)〉Fβ1

i β
1
j F

β2
i β

2
j 〈β1

j , x
σ(s+1),

. . . , xσ(t), yξ(p1+1), . . . , yξ(p2)〉〈β2
j , x

σ(t+1), . . . , xσ(r), yξ(p3+1), . . . , yξ(p4)〉, where 0≤ s ≤
t ≤ r, 0 ≤ p1 ≤ p2 ≤ p3 ≤ p4 ≤ p, 1 ≤ i1, j1, i2, j2 ≤ m, σ passes through all
permutations ofr indices andξ passes through all permutations ofp indices.

The axiom says that

〈A,B|x1, x2|y〉 = 〈A,B|x1, y|x2〉〈A,B|x2, y|x1〉
for anyA,B, x1, x2, andy.

We say that a system of disk correlation function isextended if the following condition
holds.

Axiom 5.8. Let xi ∈ A, A = {x1, . . . , xr}, y1, y
i
2 ∈ B, andB = {y1, . . . , yp}. Denote

by 〈A,B|y1, y2〉a the sum of all numbers as〈xσ(1), . . . , xσ(s), y1, y
ξ(1), . . . , yξ(q), αi〉Fαiαj

〈αj, xσ(s+1), . . . , xσ(r), y2, y
ξ(q+1), . . . , yξ(p)〉, where 0≤ s ≤ r, 0 ≤ q ≤ p, 1 ≤ i, j ≤ n,

σ passes through all permutations ofr indices andξ passes through all permutations ofp
indices.

Denote by〈A,B|y1, y2〉b the sum of all numbers as〈xσ(1), . . . , xσ(r), y1, y
ξ(1), . . . , yξ(q1),

βi, y
ξ(q1+1), . . . , yξ(q2), y2, y

ξ(q2+1), . . . , yξ(q3)βj, y
ξ(q3+1), . . . , yξ(p)〉Fβiβj , where 0≤ q1

≤ q2 ≤ q3 ≤ p, 1 ≤ i, j ≤ n, σ passes through all permutations ofr indices andξ passes
through all permutations ofp indices.

The axiom says that

〈A,B|y1, y2〉a = 〈A,B|y1, y2〉b
for anyA,B, y1 andy2.

It is easy to prove that the axioms are fulfilled for any bases{α1, . . . , αn} ⊂ A,
{β1, . . . , βm} ⊂ B if they are fulfilled for one pair of such bases.

5.3 LetN = {A, x �→ x∗, B, y �→ y∗,F, Φ(Ω,O)} be a stable field theory on the category
C0

0,1,1. Consider the collection of tensors〈x1, . . . , xk, y1, . . . , y?〉N = Φ(Ω,O)(z)(∅,1). Here
Ω is a sphere (if? = 0) or a disk (if? > 0) with k special interior pointsa1, . . . , ak and
with ? special boundaries pointsb1, . . . , b?, ∅ is the empty diagram ofΩ and 1 is identical
permutation. We assume that the pointsb1, . . . , b? are ordered by the orientation of diskΩ
andz = x1 ⊗ · · · ⊗ xk ⊗ y1 ⊗ · · · ⊗ y?, wherexi corresponds toai andyi corresponds to
bi. We say that the tensors〈x1, . . . , y?〉N aregenerated byN.
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Theorem 5.1. The correspondence N �→ {〈x1, . . . , y?〉N} is one-to-one correspondence
between stable field theories on C0,1,1 and systems of disk correlation functions. If N is
stable field theories on C0,2,1 then {〈x1, . . . , y?〉N} is an extended systems of disk correlation
functions.

Proof.

(1) Prove that{〈x1, . . . , y?〉N} is a (extended) system of disk correlation functions. Axioms
(5.1)–(5.3) for systems of disk correlation functions follow from Axioms (1)–(3) for
topological field theories.Axioms 5.4–5.7are fulfilled becauseΦ(Ω,O)(z) ∈ H∗(Ω).

(2) Now let {〈x1, . . . , y?〉} be a system of disk correlation functions. Consider a sphere
(if ? = 0) or a disk (if? > 0)Ω with k special interior pointsa1, . . . , ak and with?
special boundaries pointsb1, . . . , b?. PutΦ(Ω,O)(z)(∅,1) = 〈x1, . . . , xk, y1, . . . , y?〉N.
We assume that the pointsb1, . . . , b? are ordered by the orientation of diskΩ andz =
x1 ⊗ · · · ⊗ xk ⊗ y1 ⊗ · · · ⊗ y?, wherexi corresponds toai andyi corresponds tobi. ∅
is the empty diagram ofΩ and 1 is identical permutation.

Using Axioms (0), (4) and (5) for topological field theories we can uniquely continue
Φ(Ω,O)(z) up to a linear functionl : K(Ω,O) → K. It follows from Axioms 5.4–5.7
for systems of disk correlation functions thatl ∈ H∗(Ω,O). It follows from Axioms
5.1–5.3for systems of disk correlation functions that (1)–(3) for topological field theories are
fulfilled. �

6. Structure equations

6.1 Let, as above,A, x �→ x∗ andB, y �→ y∗ be vector spaces with involutions. These
involutions generate involutions∗ onA⊗k⊗B⊗? by the rule∗(x1⊗· · ·⊗xk⊗y1⊗· · ·⊗y?) =
(x∗

1 ⊗ · · · ⊗ x∗
k ⊗ y∗

? ⊗ · · · ⊗ y∗
1). Fix bases{α1, . . . , αn} ⊂ A and{β1, . . . , βm} ⊂ B. By

definition, we consider that a multiplication of monomialsαi1 ⊗· · ·⊗αik ⊗βj1 ⊗· · ·⊗βj?
andαĩ1 ⊗ · · · ⊗ αĩ

k̃
⊗ βj̃1

⊗ · · · ⊗ βj̃
?̃

is the monomialαi1 ⊗ · · · ⊗ αik ⊗ αĩ1
⊗ · · · ⊗ αĩ

k̃
⊗

βj1 ⊗ · · · ⊗ βj? ⊗ βj̃1
⊗ · · · ⊗ βj̃

?̃
.

Now consider a tensor series, i.e., a formal series of tensor monomialsF =∑
c(i1, . . . , ik|j1, . . . , j?)αi1 ⊗· · ·⊗αik ⊗βj1 ⊗· · ·⊗βj? , wherec(i1, . . . , ik|j1, . . . , j?) ∈

K. The involution∗ naturally acts on the set of such series. The multiplication of monomial
defines the multiplication of formal series.

Define “partial derivative” of tensor series. It is a linear continuation of partial derivative
of monomials.

Let ∂(αi1 ⊗ · · · ⊗ αik ⊗ βj1 ⊗ · · · ⊗ βj?)/∂αi be the sum of monomials asαi1 ⊗ · · · ⊗
αip−1 ⊗ αip+1 ⊗ · · · ⊗ αik ⊗ βj1 ⊗ · · · ⊗ βj? such thatip = i.

Similarly, let ∂(αi1 ⊗ · · · ⊗ αik ⊗ βj1 ⊗ · · · ⊗ βj?)/∂βi be the sum of monomials as
αi1 ⊗ · · · ⊗ αik ⊗ βj1 ⊗ · · · ⊗ βjp−1 ⊗ βjp+1 ⊗ · · · ⊗ βj? such thatjp = i.

Put ∂2/∂αi∂αj = (∂/∂αi)(∂/∂αj), ∂2/∂αi∂βj = (∂/∂αi)(∂/∂β), ∂2/∂βi∂βj =
(∂/∂βi)(∂/∂βj), ∂3/∂αi∂αj∂αr = (∂/∂αi)(∂/∂αj)(∂/∂αr).
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A definition of∂3(αi1 ⊗· · ·⊗αik ⊗βj1 ⊗· · ·⊗βj?)/∂βi∂βj∂βr is more complicated. It is
the sum of monomials asαi1 ⊗· · ·⊗αik ⊗βs2 ⊗· · ·⊗βsp−1 ⊗βsp+1 ⊗· · ·⊗βsq−1 ⊗βsq+1 ⊗
βs? such that the sequencesβi, βs2, . . . , βsp−1, βj, βsp+1, . . . , βsq−1, βr, βsq+1, . . . , βs? and
(βj1, . . . , βj?) coincide other cyclic permutation.

Monomialsαi1 ⊗· · ·⊗αik ⊗βj1 ⊗· · ·⊗βj? andαĩ1 ⊗· · ·⊗αĩk ⊗βj̃1 ⊗· · ·⊗βj̃? are called

equivalent, if
⋃k
r=1 ir = ⋃k

r=1 ĩr and
⋃l
r=1 jr = ⋃l

r=1 j̃r. By [αi1 ⊗ · · · ⊗ βj? ] denote the
equivalence class ofαi1 ⊗ · · · ⊗ βj? . A tensor seriesF = ∑

c(i1, . . . , ik|j1, . . . , j?)ai1 ⊗
· · · ⊗ bj? generates a series [F ] = ∑

c[i1, . . . , ik|j1, . . . , j?][ai1 ⊗ · · · ⊗ bj? ], where the
sum is taken over equivalence classes of monomials andc[i1, . . . , ik|j1, . . . , j?] is the sum
of all coefficientsc(ĩ1, . . . , j̃?), corresponding to monomials from the equivalence class
[ai1 ⊗ · · · ⊗ bj? ].

We say that a tensor seriesF = ∑
c(i1, . . . , ik|j1, . . . , j?)αi1 ⊗ · · · ⊗ αk ⊗ βj1 ⊗

· · · ⊗ βj? is a structure series on a spaceH = A ⊕ B with an involution∗ and bases
{α1, . . . , αn|β1, . . . , βm}, if the following conditions hold.

Axiom 6.1. The coefficientsc(i1, . . . , jk|j1, . . . , j?) are invariant under all permutations
of {ir} and cyclic permutations of{jr}.

Axiom 6.2. F∗ = F .

Axiom 6.3. The coefficientsc(i, j|) andc(|i, j) generate nondegenerate matrices. ByF
αiαj
a

andF
βiβj
b denote the inverse matrices ofc(i, j|) andc(|i, j), respectively.

Axiom 6.4.
 n∑
p,q=1

∂3Fa

∂αi∂αj∂αp
⊗ F

αpαq
a

∂3Fa

∂αq∂αk∂α?


 =


 n∑
p,q=1

∂3Fa

∂αk∂αj∂αp
⊗ F

αpαq
a

∂3Fa

∂αq∂αi∂α?


 ,

whereFa is the part of the tensor seriesF , consisting from all monomials without mono-
mials, containing someβi.

Axiom 6.5.
 m∑
p,q=1

∂3F

∂βi∂βj∂βp
⊗ F

βpβq
b

∂3F

∂βq∂βk∂β?


 =

m∑
p,q=1

[
∂3F

∂β?∂βi∂βp
⊗ F

βpβq
b

∂3F

∂βq∂βj∂βk

]
.

Axiom 6.6.[∑ ∂2F

∂αk∂βp
⊗ F

βpβq
b

∂3F

∂βq∂βi∂βj

]
=

[∑ ∂2F

∂αk∂βp
⊗ F

βpβq
b

∂3F

∂βq∂βj∂βi

]
.

Axiom 6.7.[∑ ∂2F

∂βk∂αp
⊗ F

αpαq
a

∂3F

∂αq∂αi∂αj

]
=

[∑ ∂2F

∂αi∂βp
⊗ F

βpβq
b

∂3F

∂βq∂βk∂βr
⊗ F

βrβ?
b

∂2F

∂β?∂αj

]
.
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We say that the conditions fromAxioms 6.1–6.7arestructure equations. They are non-
commutative analogues of associativity equations[5,14].

6.2 Any noncommutative tensor seriesF = ∑
c(i1, . . . , ik|j1, . . . , j?)αi1 ⊗· · ·⊗αik ⊗

βj1 ⊗ · · · ⊗ βj? generates a family of tensorsfFr,? : A⊗r ⊗ β⊗? → C, wherefFr,?(αi1 ⊗
· · · ⊗ αir ⊗ βj1 ⊗ · · · ⊗ βj?) = c(i1, . . . , ir|j1, . . . , j?). Put〈xi1, . . . , xir , yj1, . . . , yj?〉F =
fFr,?(xi1 ⊗ · · · ⊗ xir ⊗ yj1 ⊗ · · · ⊗ yj?).

Theorem 6.1. A tensor series F is a structure series, iff the collection of tensors
{〈x1, . . . , xr, y1, . . . , y?〉F } forms a system of disk correlation functions. Any system of
disk correlation function is generated by a structure series.

Proof. Formal calculation demonstrates equivalence of the axioms of disk correlation func-
tions and the axioms of structure series with the same numbers. �

7. Noncommutative Frobenius manifolds

7.1 According to[6], any solution WDVV equation generates a special deformation of
Frobenius algebra. In this section we associate to any solution of structure equation some
deformation of extended Frobenius algebra.

Definition 7.1. Extended Frobenius algebraH = {H = A+ B, (x, y), x �→ x∗} is a finite
dimensional associative algebraH overK endowed with a decompositionH = A+B ofH
into a direct sum of vector spaces; an invariant symmetric bilinear form(x, y) : H ⊗H →
K that is(x, y) = (y, x) and(xy, z) = (x, yz); an involutive anti-automorphismH → H ,
denoted byx �→ x∗; such that the following axioms hold:

(1) A is a subalgebra belonging to the centre of algebraH ;
(2) B is a two-sided ideal ofH (typically noncommutative);
(3) restrictions(x, y)|A and(x, y)|B are nondegenerate scalar products on algebrasA and

B, resp.
(4) an involutive anti-automorphism preserves the decompositionH = A+B and the form

(x, y) onH , i.e.A∗ = A, B∗ = B, (x∗, y∗) = (x, y).

A full description of semisimple extended Frobenius algebras overC follows from
[3, Section 2].

The structure tensorsFα′,α′′ = (α′, α′′), Fβ′,β′′ = (β′, β′′), Rαβ = (α, β), Sα′,α′′,α′′′ =
(α′, α′′, α′′′), Tβ′,β′′,β′′′ = (β′β′′, β′′′), Rαβ′β′′ = (αβ′, β′′), Iα′,α′′ = ((α′)∗, α′′), Iβ′,β′′ =
((β′)∗, β′′), uniquely describe an extended Frobenius algebra[3]. Here we denote by
α, α′, α′′ andβ, β′, β′′ the elements of the bases{α1, . . . , αn} ⊂ A and{β1, . . . βm} ⊂ B,
respectively.

7.2 Later we assume that the fieldK is the field of real or complex numbers. Associate a
deformation of extended Frobenius algebras to a structure series on a spaceH = A+Bwith
involution∗ : H → H and a basis{α1, . . . , β?} ⊂ H . First consider the coordinates onH
that associate the elementz = siαi+tjβj to collections(s1, . . . , sn|t1, . . . , tm) ∈ K

n+m. The
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correspondencesαi �→ si, βi �→ ti and (tensor multiplication)�→ (number multiplication)
map tensor seriesF(α1, . . . , βm) to formal number serieŝF(s1, . . . , tm). By definition, put
Fαiαj = c(i, j|), Fβiβj = c(|i, j), Iαiαj = Fαiα∗

k
, Iβiβj = Fβiβ∗

k
. Let {Fαiαj } and{Fβiβj } be

the inverse matrix for{Fαiαj } and{Fβiβj }, respectively. Put

RFαiβj = ∂2F

∂αi∂βj
, SFαiαjαk = ∂3F

∂αi∂αj∂αk
, T Fβiβjβk = ∂3F

∂βi∂βj∂βk
,

RFαiβjβk = ∂2F

∂αi∂βp
Fβpβq

∂F

∂βq∂βj∂βk
.

Theorem 7.1. Let F be a structure series. Then at convergence points the tensors Fαiαj ,

Fβiβj , Iαiαj , Iβiβj , R̂αiβj = R̂Fαiβj (s
1, . . . , tm), Ŝαiαjαk = ŜFαiαjαk (s

1, . . . , tm), T̂βiβjβk =
T̂ Fβiβjβk

(s1, . . . , tm), R̂αiβjβk = R̂F
αiβjβk

(s1, . . . , tm) define an extended Frobenius algebra.

Proof. We shall raise indices of tensors, using the tensorsFαiαj andFβiβj . In the case
of nonsymmetric tensors we always raise the last index. By definition, putŜαiαjαkα? =∑
r Ŝ

αr
αiαj Ŝαrαkα? T̂βiβjβkβ? = ∑

r T̂
βr
βiβj

T̂βrβkβ? . It follows from [3] that the above theorem is
equivalent to the following conditions:

(1) matricesFαiαj andFβiβj are nondegenerate;

(2) tensorŝSαiαjαk andŜαiαjαkα? are symmetric with respect to all permutations;

(3) tensorŝTβiβjβk andT̂βiβjβkβ? are symmetric with respect to cyclic permutations;

(4) R̂α,β1,β2 = R̂
β′
α T̂β′,β1,β2;

(5) R̂α
′
β Ŝα′,α1,α2 = R̂

β′
α1R̂

β′′
α2 T̂β′,β′′,β;

(6) R̂α,β1,β2 = R̂α,β2,β1;

(7) Îα
′
α1
Îα′,α2 = Fα1,α2, Îβ

′
β1
Îβ′,β2 = Fβ1,β2;

(8) Îα1,α2 = Îα2,α1, Îβ1,β2 = Îβ2,β1, Îα
′
α R̂α′,β = Î

β′
β R̂α,β′ ;

(9) Îα
′
α1
Îα

′′
α2
Îα

′′′
α3
Ŝα′′′,α′′,α′ = Ŝα1,α2,α3, Îβ

′
β1
Î
β′′
β2
Î
β′′′
β3
T̂β′′′,β′′,β′ = T̂β1,β2,β3.

All these conditions directly follow from our definition and the axioms of structure
series. �

Thus, structure series generate an extended Frobenius algebra in the points ofH , where
the series fromTheorem 7.1converge. This defines a deformation of extended Frobe-
nius algebra, i.e. some analogue of Frobenius manifold[6] for (noncommutative) extended
Frobenius algebras.

8. Examples

8.1 For dimB = 0, Theorems 5.1 and 6.1get over into Theorem III, Section 4.3 from
Manin [9] that claim that cohomological field theory is equivalent to formal Frobenius
manifolds.
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Noncommutative Frobenius manifolds with dimA = 0, dimB = 1 are Frobenius mani-
folds of range 1. They are described by formal seriesF(β) [9].

For dimA = 1, dimB = 1. Put〈αn, βm〉 = 〈α, . . . , α, β, . . . , β〉. Axiom 6.7 demon-
strates that all correlators are determined by correlators〈αn〉, 〈βm〉 and〈α, β〉.

Suppose, for example that〈α, α〉 = 〈α, α, α〉 = 〈β, β〉 = 〈β, β, β〉 = 1 and〈αm〉 =
〈βm〉 = 0 for m > 3. Then according toAxiom 6.7, 〈α3〉〈α, β〉 = 〈β3〉〈α, β〉〈α, β〉 and
thus〈α, β〉 is equal to 0 or 1. Moreover,Axiom 6.7gives〈α3〉〈αβ2〉 = 2〈α, β〉〈β4〉〈α, β〉 +
2〈α, β〉〈β3〉〈α, β2〉 and thus〈α, β2〉 = 0. Analogously we prove that〈α, βm〉 = 0 form > 1.
On the other hand,Axiom 6.7gives〈α3〉〈α2, β〉 = 〈α, β〉〈αβ〉〈α, β3〉 + 2〈α2, β〉〈α, β〉〈β3〉
and thus〈α2, β〉 = 0. Analogously we prove that〈αn, βm〉 = 0 for nm > 1.

Thus, if the restriction of structure seriesF onA andB is (1/2)α⊗2+α⊗3 and(1/2)β⊗2+
β⊗3 thenF = (1/2)a⊗2 + a⊗3 + (1/2)b⊗2 + b⊗3 + ξα⊗ β, whereξ ∈ {0,1}.

8.2 Inanalogy with[12] any extended Frobenius algebraH = {H = A+̇B, (·, ·), ∗} with
unite 1 generates some system of disk correlation functions by the rule〈α1, . . . , αs, β1,

. . . , βt〉 = (α1, . . . , αsβ1, . . . , βt,1).
8.3 Accordingto[4], a noncommutative Frobenius manifold in our sense is generated by

a topological Landay–Ginzburg theory ofB-type with 2D-brane conditions.
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